El problema del vendedor viajero, problema del vendedor ambulante, problema del agente viajero o problema del viajante (TSP por sus siglas en inglés (Travelling Salesman Problem)), responde a la siguiente pregunta: dada una lista de ciudades y las distancias entre cada par de ellas, ¿cuál es la ruta más corta posible que visita cada ciudad exactamente una vez y al finalizar regresa a la ciudad origen? Este es un problema NP-Hard dentro en la optimización combinatoria, muy importante en la investigación de operaciones y en la ciencia de la computación.
El problema fue formulado por primera vez en 1930 y es uno de los problemas de optimización más estudiados.
Es usado como prueba para muchos métodos de optimización. Aunque el problema es computacionalmente complejo, una gran cantidad de heurísticas y métodos exactos son conocidos, de manera que, algunas instancias desde cien hasta miles de ciudades pueden ser resueltas.
El TSP tiene diversas aplicaciones aún en su formulación más simple, tales como: la planificación, la logística y en la fabricación de circuitos electrónicos. Un poco modificado, aparece como: un sub-problema en muchas áreas, como en la secuencia de ADN. En esta aplicación, el concepto de “ciudad” representa, por ejemplo:
clientes, puntos de soldadura o fragmentos de ADN y el concepto de “distancia” representa el tiempo de viaje o costo, o una medida de similitud entre los fragmentos de ADN. En muchas aplicaciones, restricciones adicionales como el límite de recurso o las ventanas de tiempo hacen el problema considerablemente difícil. El TSP es un caso especial de los Problemas del Comprador Viajante (travelling purchaser problem).
En la teoría de la complejidad computacional, la versión de decisión del TSP (donde, dado un largo “L”, la tarea es decidir cuál grafo tiene un camino menor que L) pertenece a la clase de los problemas NP-completos. Por tanto, es probable que en el caso peor el tiempo de ejecución para cualquier algoritmo que resuelva el TSP aumente de forma exponencial con respecto al número de ciudades.
No hay comentarios.:
Publicar un comentario